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Abstract
Starch is the most widespread and abundant storage carbohydrate in
plants. We depend upon starch for our nutrition, exploit its unique prop-
erties in industry, and use it as a feedstock for bioethanol production.
Here, we review recent advances in research in three key areas. First,
we assess progress in identifying the enzymatic machinery required for
the synthesis of amylopectin, the glucose polymer responsible for the
insoluble nature of starch. Second, we discuss the pathways of starch
degradation, focusing on the emerging role of transient glucan phos-
phorylation in plastids as a mechanism for solubilizing the surface of the
starch granule. We contrast this pathway in leaves with the degradation
of starch in the endosperm of germinated cereal seeds. Third, we con-
sider the evolution of starch biosynthesis in plants from the ancestral
ability to make glycogen. Finally, we discuss how this basic knowledge
has been utilized to improve and diversify starch crops.
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INTRODUCTION

Starch is an insoluble glucan composed of two
polymers of glucose, amylopectin and amylose.
In higher plants, starch is synthesized in plas-
tids in both photosynthetic and nonphotosyn-
thetic cells. As the principal storage carbohy-
drate, starch plays important roles during the
life cycle of the plant. In leaves, a fraction of

the carbon assimilated through photosynthesis
is retained in the chloroplasts as starch rather
than being converted to sucrose for export to
the sites of growth. This transitory starch is de-
graded at night to provide substrates for leaf
respiration and for continued sucrose synthesis
for export to the rest of the plant. The supply of
carbon from starch can be vital for normal plant
growth. Mutant Arabidopsis plants that cannot
synthesize starch, or cannot degrade it at night,
have reduced growth rates under most condi-
tions (129). In nonphotosynthetic organs (e.g.,
stems, roots, tubers, and seeds), sucrose may be
converted to starch for longer-term storage, of-
ten to high levels, in specialized plastids termed
amyloplasts. This storage starch is remobilized
to support phases of growth (e.g., seedling es-
tablishment after germination; 39) or to meet
locally high demand for carbon for specific pro-
cesses (e.g., nectar secretion; 109). Starch also
accumulates transiently in certain cell types at
specific developmental stages. For example, it
is often present in tissues behind the division
zones of meristems, possibly reflecting tempo-
rary imbalances between carbon import and uti-
lization as cells move from division to expansion
and differentiation (68).

The harvested parts of our staple crop plants
are starch-storing organs. Cereal seeds (rice,
maize, wheat, barley, sorghum, and others) are
the most important group, followed by tu-
bers (e.g., potato, sweet potato, yam) and stor-
age roots (e.g., cassava, taro), and seeds of
beans and peas. Much of our agricultural land
is devoted to their growth. Most of the esti-
mated 2500 million tonnes of starch crops har-
vested annually (Food and Agriculture Organi-
zation of the United Nations, values for 2007;
http://faostat.fao.org) is consumed directly as
food or used as animal feed, but there is in-
creasing demand from nonfood industries for
starch as a renewable raw material. In particular,
starch is a major feedstock for first-generation
biofuels due to the relative ease with which it
can be converted to fermentable sugars (128).
Understanding the pathways by which starch is
synthesized and degraded in plants will facili-
tate the improvement of starch crops for both
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food and nonfood uses. It is already clear that
studies of model plants alone will not provide
adequate information for this purpose. There
are differences between species, and between
leaves, roots, and seeds, in the factors control-
ling starch metabolism, the structure of starch
itself, and the pathways by which it is degraded.

Starch Structure

Amylopectin and amylose together form
semicrystalline, insoluble granules with an

internal lamellar structure (Figure 1) (11).
Amylopectin is the major component, typically
making up 75% or more of the starch gran-
ule. A large, branched molecule, amylopectin
has an estimated molecular weight of between
107 and 109 Daltons (11). The glucosyl residues
of amylopectin are linked by α-1,4-bonds to
form chains of between 6 and >100 gluco-
syl residues in length. The α-1,4-linked chains
are connected by α-1,6-bonds (branch points).
Amylopectin is responsible for the granular na-
ture of starch. Although its exact molecular

2 μm

A-type

B-type

Amylopectin

Internal growth-ring structure of a starch granule
(adjusted composite image)  

Alternating
crystalline and
amorphous
lamellae, repeated
with 9-nm
periodicity

Crystalline
lamellae
composed of
aligned double
helices of
amylopectin
(B-type shown) 

Alternative
arrangement of
double helices
in crystalline
lamellae (top
view). Mixtures
of A and B are
designated
C-type 

Glucose units are linked into
chains via α-1,4-bonds and
branched via α-1,6-bonds 

Neighboring chains of
amylopectin clusters form
double helices (represented
as cylinders, below)  

Amylose chains
form single helices  

Amylose a

bb

Figure 1
The composition and structure of starch granules. (a) A schematic representation of amylose and
amylopectin, and the structures adopted by the constituent chains. (b) The relationship between the starch
granule (composite image of potato granules, left) and amylopectin structure. Crystalline and amorphous
lamellae arrange to form blocklets (not shown; see text) that make up the growth rings.
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Crystalline lamellae:
the alternating
crystalline and
amorphous lamellae of
amylopectin have been
likened to a side-chain,
liquid-crystalline
polymer (157)

architecture is not known, the combination
of chain lengths, branching frequency, and
branching pattern gives rise to a racemose, or
treelike, structure in which clusters of chains
occur at regular intervals along the axis of the
molecule. Typically, chains within these clusters
average between 12 and 15 glucosyl residues.
The less abundant chains that span two clusters
contain approximately 35–40 residues, while
those that span three clusters contain approx-
imately 70–80 residues (11, 59). Within the
starch granule, amylopectin molecules are ra-
dially organized such that the free (nonreduc-
ing) ends of the chains point toward the periph-
ery. Pairs of adjacent chains within clusters form
double helices that pack together in organized
arrays, giving rise to concentric, crystalline lay-
ers (lamellae) within the granule. These lamel-
lae alternate with amorphous lamellae formed
by the regions of the amylopectin molecule that
contain the branch points. The lamellar orga-
nization is repeated with a 9- to 10-nm period-
icity. This semicrystalline structure makes up
the bulk of the matrix of the starch granule
and is highly conserved in higher-plant starches
(Figure 1) (65, 173). It seems possible that the
organization of amylopectin to form the gran-
ule matrix is largely a physical process.

Higher-order structures also exist in starch
granules (Figure 1). Most granules contain
concentric “growth rings” that are visible by
light microscopy and by scanning electron mi-
croscopy after etching the granule matrix with
acids or hydrolytic enzymes (14, 104, 173).
These rings have periodicities of several hun-
dreds of nanometers. They are thought to re-
flect the organization of the alternating crys-
talline/amorphous lamellae into near-spherical
blocklets, which vary periodically in diameter
(between 20 and 500 nm) as the granule is
laid down (49, 111). Based on electron opti-
cal tomography and cryo-electron diffraction
experiments, it has also been proposed that 18-
nm-wide, left-handed superhelices form from
the double helices that comprise the crystalline
lamellae (102). The relationship between these
proposed structures and the blocklets has not
been fully resolved.

Amylopectin is chemically similar to glyco-
gen, the soluble polyglucan accumulated as a
storage compound in animals, fungi, and bac-
teria. Glycogen is also a glucose polymer com-
posed of α-1,4-linked, α-1,6-branched chains.
However, glycogen has more branch points
than amylopectin and these are arranged in
a uniform rather than discontinuous pattern.
Glycogen particles are limited in size (typically
only 20–60 nm in diameter) (160) due to steric
interference between branches as the diameter
increases. Importantly, the branching pattern
of glycogen does not allow the formation of the
secondary and higher-order glucan structures
that make up the matrix of the starch granule.
The ability of plants to synthesize amylopectin
has evolved from an ancestral capacity to make
glycogen (see below and 5, 32, 103). Amy-
lose, the second glucan component of starch,
is smaller than amylopectin (relative molecu-
lar weight estimates vary between 105 and 106

Daltons) and only lightly branched (11). It is
believed to exist primarily in an unorganized
form within amorphous regions of the granule.

A significant number of enzymes involved in
the metabolism of starch have been identified
through studies of crop and model species. The
proteins involved in starch metabolism in Ara-
bidopsis have been tabulated previously (130).
The subsequent sections describe the roles of
these enzymes in the assembly and disassembly
of the starch granule.

THE MECHANISM OF STARCH
GRANULE BIOSYNTHESIS

Amylopectin Synthesis

The substrate for starch biosynthesis in
higher plants is ADPglucose. The gluco-
syl moiety is transferred onto existing glu-
can chains by starch synthases (ADP-glucose:
[1→4]-α-d-glucan 4-α-d-glucosyltransferase;
EC: 2.4.1.21). Higher-plant starch synthases
are encoded by five gene classes, designated
GBSS (for granule-bound starch synthase), SSI,
SSII, SSIII, and SSIV. Phylogenetic analyses
separate the GBSS, SSI, and SSII classes from
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the SSIII and SSIV classes (5, 81, 103). GBSS
binds tightly to the starch granule and is respon-
sible for amylose synthesis (see below). The
other SS isoforms (often termed soluble SS)
generate the chains in amylopectin and are ei-
ther soluble in the plastid stroma, or part sol-
uble and part associated with the granule. Ge-
netic and biochemical data indicate that each
SS isoform has different properties and a dis-
tinct role in amylopectin synthesis. Analysis of
the distribution of chain lengths of amylopectin
in mutant and transgenic plants lacking specific
isoforms has led to the idea that the SSI, SSII,
and SSIII classes preferentially elongate short,
medium, and long chains, respectively (see 150
and references therein).

The branching of amylopectin proceeds
concurrently with chain elongation (99).
Branching is catalyzed by branching en-
zymes (BE; α-1,4-glucan: α-1,4-glucan-6-
glycosyltransferase; EC: 2.4.1.18), which cut
existing α-1,4-glucan chains and transfer the
cut segment of six or more glucose units to the
C6 position of a glucosyl residue of another (or
the same) glucan chain. Higher-plant BEs fall
into two classes, designated class I and class II
(sometimes defined as B and A, respectively).
Class I enzymes preferentially transfer longer
chains than class II enzymes (see 150 and refer-
ences therein). Genetic analysis shows that the
two classes of BE make distinct contributions
to the synthesis of amylopectin (150).

The evolution of multiple, specialized iso-
forms of SS and BE can be seen as a crucial
factor in determining the architecture of amy-
lopectin and therefore the capacity to synthe-
size starch rather than glycogen. However, the
relative levels of SS and BE isoforms differ be-
tween starch-synthesizing organs. For example,
in potato tubers SSIII accounts for about 80%
of soluble starch synthase activity (90), in pea
embryos about 60% of the activity is accounted
for by SSII (30), and in maize endosperm about
60% is accounted for by SSI (16). These sorts of
differences probably contribute to the observed
variation in the structure of starches from dif-
ferent organs and species.

β-limit dextrin:
a branched glucan
digested with
exo-acting β-amylase.
External chains
become stubs of two or
three glucose residues.
Internal chains are not
degraded

Debranching Enzyme Function in
Amylopectin Synthesis

Besides SS and BEs, other glucan-modifying
enzymes participate in the starch biosynthetic
process. Debranching enzymes (DBEs; α-1,6-
glucanohydrolase), which cleave branch points,
are important determinants of the structure of
amylopectin. This is evident from the dramatic
changes in glucan structure and the form in
which glucan accumulates in plants that lack
specific DBE isoforms.

Plants contain two types of DBEs—
isoamylase (ISA; EC: 3.2.1.68) and limit-
dextrinase (LDA, also called pullulanase; EC:
3.2.1.142)—distinguishable by their amino acid
sequences and substrate specificities. The ISA
type has three classes, designated as ISA1, ISA2,
and ISA3 (61). ISA1 and ISA2 are strongly im-
plicated in amylopectin synthesis. In potato tu-
bers and Arabidopsis leaves, ISA1 forms a com-
plex with ISA2 resulting in a heteromultimeric
enzyme (26, 61, 162). In the endosperm of rice,
and probably other cereals, ISA1 exists both
as a homomultimer and as a heteromultimer
with ISA2 (152). The primary role of LDA and
ISA3 appears to be in starch degradation (see
below). ISA1 is most active on glucan substrates
with relatively long external chains, such as sol-
ubilized amylopectin, whereas LDA and ISA3
have high activities on glucans with short ex-
ternal chains (such as β-limit dextrins). ISA2
appears to be catalytically inactive (61). It prob-
ably modulates the action or stability of ISA1,
rather than contributing directly to debranch-
ing (26, 162).

In mutant or transgenic plants deficient in
ISA1, granular starch is reduced, or even ab-
sent, and is partly replaced by water-soluble
glucans. This has been observed in develop-
ing cereal endosperms (12, 63, 97), green al-
gae (24, 94), Arabidopsis leaves (26, 162), and
potato tubers (13). In Arabidopsis and potato,
loss of ISA2 has the same effect as loss of
ISA1 (13, 26, 162, 178). The major soluble glu-
can is a glycogen-like polymer termed phyto-
glycogen. Phytoglycogen has a higher propor-
tion of short chains (fewer than 10 glucosyl
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α-amylase: an
endoamylase that
hydrolyzes
α-1,4-bonds. Higher
plants contain three
classes: AMY1, AMY2,
and AMY3 (134).
AMY3 has a
chloroplast transit
peptide; AMY1 and
AMY2 function in
Arabidopsis is unknown

residues) and more branch points than amy-
lopectin. The average distance between branch
points is less than for amylopectin. As for glyco-
gen, it is presumed that the branching struc-
ture of phytoglycogen prevents the formation
of the higher-order structures seen in starch
granules. Phytoglycogen accumulation is in-
terpreted to mean that “wrongly positioned”
branch points introduced by BEs are nor-
mally hydrolyzed through selective debranch-
ing. This would liberate the misplaced branches
as free oligosaccharides, leaving mature amy-
lopectin capable of self-organizing to form the
matrix of the starch granule (for earlier reviews,
see 4, 95, 96, 176). If the misplaced branches
remain, the glucan cannot self-organize to
form a granule and instead accumulates as
phytoglycogen.

Other enzymes strongly influence whether
glucans accumulate as insoluble granules or as
soluble phytoglycogen in isa1 mutants. Most
isa1 mutants still synthesize some starch gran-
ules, either alongside phytoglycogen accumu-
lation in the same plastids (178), in different
plastids in the same cell (12), or in different
cell types of the same plant organ (26, 97).
One explanation may be redundancy between
DBEs, whereby debranching via ISA3 and/or
LDA partially substitutes for the absence of
ISA1. Maize and rice mutants with mild isa1
alleles accumulate more phytoglycogen when
LDA is also missing (35, 46), providing some
support for this idea. However, the complement
of other starch-synthesizing enzymes in the cell
can also have a profound influence on the phe-
notype of isa1 mutants. In maize, mutants that
lack either GBSS or SSIII in addition to ISA1
(wx su1 and du su1 mutants, respectively) make
25–30% less phytoglycogen in developing en-
dosperm than do mutants that lack only ISA1,
and mutants that lack one branching enzyme
isoform of the BEII class as well as ISA1 (ae
su1 mutants) make little or no phytoglycogen
(3, 8).

Recent studies of Arabidopsis have provided
new insight into the complexity of phytoglyco-
gen accumulation. Mutants lacking all DBE ac-
tivity (i.e., isa1isa2isa3lda quadruple mutants)

do not have recognizable starch granules (136,
163). This result is superficially consistent with
the idea that DBE activity is absolutely required
for starch biosynthesis. However, further bio-
chemical and genetic analyses reveal that the
complete loss of starch in this mutant is the re-
sult of modification and turnover of branched
glucans by starch-degrading enzymes rather
than loss of DBE activity per se. Evidence for
this is as follows. First, phytoglycogen extracted
from the DBE-free mutant is rich in extremely
short chains (fewer than six glucosyl residues)
(136, 163). Such short chains are highly unlikely
to be produced simply by the actions of SSs
and BEs: Their presence is consistent with the
action on a branched glucan of α-amylase (α-
1,4-glucan glucanohydrolase; EC: 3.2.1.1) and
β-amylases, enzymes that hydrolyze linear α-
1,4-linked chains during normal starch degra-
dation. Second, the DBE-free mutant accu-
mulates small branched malto-oligosaccharides
and maltose in addition to phytoglycogen.
These are products of the actions of α- and
β-amylases on branched glucans (136). Third,
loss of the chloroplastic α-amylase, AMY3,
from the DBE-free mutant partially restores
starch granule biosynthesis. This implies that
the branched glucan produced by SSs and BEs
in the DBE-free mutant is actually capable of
crystallizing to produce granules, but its par-
tial hydrolysis by AMY3 destroys this prop-
erty (136). These studies confirm that although
DBEs are important in starch biosynthesis, they
are not strictly necessary for starch granule for-
mation to occur. Thus, ISA1 activity facilitates
crystallization by removing wrongly positioned
branches. In its absence crystallization is de-
layed, allowing the aberrantly branched glu-
cans to be modified by enzymes that do not
normally participate in starch biosynthesis (e.g.,
AMY3), such that they can no longer crystallize
(136).

Protein Complex Formation Between
Starch-Synthesizing Enzymes

There is increasing evidence for the occur-
rence in starch-storing organs of multienzyme
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complexes comprising SSs, BEs, and other
enzymes. The activities of the amylopectin
biosynthetic enzymes must be interdependent
because they act on a common glucan substrate.
Physical association could serve to orchestrate
the activities and thus allow the formation of
specific glucan structures. Complexes contain-
ing both classes of BE (148) and complexes con-
taining SSI, SSII, and class II BEs (147) have
been found in wheat. Complexes containing
combinations of SSII, SSIII, and class II BEs
have been found in maize (57, 58). No com-
plexes containing DBEs have been reported.

The stability of SS/BE enzyme complexes
is dependent on the phosphorylation of
some or all of the constituent proteins (147).
Dephosphorylation in vitro by a nonspecific
phosphatase resulted in the dissociation of
the complexes (57, 147, 148) and also in the
inactivation of a wheat BEII isoform (148). The
protein kinases and phosphatases responsible
for phosphorylation and dephosphorylation of
the starch-synthesizing enzymes in vivo, the
extent to which the enzymes are present as
complexes, and the number of distinct types
of complex remain to be established. The
functional significance of complex formation
is currently unclear. There is indirect in vitro
evidence that enzymes in complexes have
a higher affinity for their glucan substrates
than the same enzymes as monomers (147),
but there is no direct evidence that complex
formation influences either the rate of starch
accumulation or the structure of glucans syn-
thesized in vivo. It is also not known whether
protein complex formation is a general feature
in starch biosynthesis. Complexes similar to
those in the developing wheat endosperm were
not found in starch-synthesizing wheat leaves
(148).

Additional enzymes are present in protein
complexes containing SS and BE in cereal
endosperm (57, 148). These include subunits
of ADP-glucose pyrophosphorylase, sucrose
synthase, pyruvate, phosphate dikinase, and
α-glucan phosphorylase. The discovery of
α-glucan phosphorylase in a complex is inter-
esting given new information about a possible

α-glucan
phosphorylase:
catalyzes reversible
phosphorolysis at the
nonreducing end of
glucan chains,
consuming
orthophosphate and
releasing glucose-
1-phosphate
(Glc-1-P). Higher
plants contain
plastidial and cytosolic
classes (PHS1, PHS2
in Arabidopsis,
respectively; 177).
Cytosolic
phosphorylase is
probably involved in
heteroglycan
metabolism (38)

role for this enzyme in starch biosynthesis (see
below).

Despite the progress in identifying the en-
zymes of amylopectin synthesis, it is frustrat-
ing that there is still no detailed understand-
ing of exactly what glucan structure SSs and
BEs produce, how DBEs selectively debranch
this nascent glucan, and how the actions of
these three enzymes are coordinated to give
rise to an amylopectin molecule that self-
organizes to form a starch granule. In part,
this problem arises from the technical difficul-
ties associated with the determination of amy-
lopectin structure and the isolation of nascent
glucans from starch-synthesizing plastids (see
176 and the discussion therein). Its solution will
require concerted efforts in the development of
new analytical methods and molecular model-
ing techniques.

Amylose Synthesis

The amylose component of starch is synthe-
sized by GBSS. Mutants and transgenic plants
lacking this enzyme are essentially amylose free
(see 29 and references therein). Amylose-free
starch granules are normal in appearance, il-
lustrating that only amylopectin is necessary
for granule formation. GBSS differs from the
other SS isoforms in its exclusive localization
to the granule and in its mode of action. Unlike
other starch synthase isoforms, GBSS trans-
fers glucosyl residues from ADP-glucose to its
glucan substrate processively, generating long
chains (31). This occurs within the semicrys-
talline matrix formed by amylopectin (146), ex-
plaining why the newly formed amylose chains
are not acted upon by stromal BEs. GBSS can
use soluble malto-oligosaccharides as substrates
for amylose production (28, 174). It can also act
on the existing side chains of amylopectin (154)
and contribute to the formation of long chains
in amylopectin (47, 53, 161). It has been pro-
posed that, in evolutionary terms, this may have
been its original function (107). Amylose syn-
thesis may render starch denser and improve
the efficiency of carbon storage, explaining the
conservation of GBSS in higher plants.
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The Initiation and Control
of Granule Formation

The initiation of starch granules and the mech-
anisms that determine granule size, number,
and morphology are still not well understood.
These factors are under genetic control and
are highly species and organ dependent (64).
In higher plants, there are usually multiple
starch granules per plastid. Amyloplasts in het-
erotrophic tissues can contain either a few large
granules (e.g., in potato tuber) or many small
granules (e.g., in rice endosperm) that may fuse
to form compound granules (e.g., in oat en-
dosperm). In wheat endosperm, two succes-
sive rounds of granule initiation result in large
lenticular A granules, initiated early in develop-
ment, and small spherical B granules initiated
late in development (124).

In mammals and in yeast, glycogen
molecules are primed by the protein glyco-
genin, which glucosylates one of its own ty-
rosine residues (self-glucosylation) to create a
chain of a few glucose residues (85). The chain
is extended and elaborated by glycogen syn-
thases (GSs) and glycogen branching enzymes.
Glycogenin-like proteins are found in plants
(19), as are other reversibly glucosylated pro-
teins (RGPs; 127). Only one report has pro-
vided evidence of a role for these proteins in
starch granule initiation; Arabidopsis plants in
which expression of a glycogenin-like protein
was repressed by RNAi had reduced starch,
as judged by iodine staining (19). This ob-
servation was not substantiated with quanti-
tative measurements or microscopic investiga-
tions. Studies of RGPs have concluded that they
are cell-wall proteins preferentially localized to
plasmodesmata, rather than being involved in
starch metabolism (118).

Recent genetic evidence suggests that the
SSIV class of starch synthase may have a role
in granule initiation. Arabidopsis leaf chloro-
plasts contain about five starch granules. How-
ever, Arabidopsis ssiv mutants have just one large
granule in each chloroplast (114). SSIV pro-
teins differ from the other SS isoforms in pos-
sessing an N-terminal extension with a pair of

coiled-coil domains and a putative 14–3-3 pro-
tein binding site (81). It is possible that features
of the N-terminal extension enable SSIV to in-
teract with other proteins and thus contribute
to granule initiation. In the absence of SSIV,
SSIII (the glucosyl transferase domain of which
is most closely related to SSIV) seems to be re-
sponsible for the initiation of the single granule
per chloroplast: Plants lacking both SSIV and
SSIII lack starch in their leaves despite having
60% of the wild-type soluble SS activity (ac-
counted for by the remaining SS isoforms; 140).
SSIII also possesses a conserved 14–3-3 binding
site (at its C-terminus; 123), and it can interact
with other starch synthase and branching en-
zymes in a phosphorylation-dependent manner
(see above). In Agrobacterium tumefaciens, GS it-
self has been proposed to prime glycogen syn-
thesis through the formation of a glucan-GS
intermediate (151). No SSs have been shown
to have such a self-priming activity, although
Szydlowski et al. (140) report that SSIII is able
to synthesize glucans from ADP-glucose in a
primer-independent way. Further work will be
required to determine the precise roles of SSIV
and SSIII in granule initiation.

Recently there has been renewed interest
in the potential biosynthetic role of the plas-
tidial α-glucan phosphorylase (E.C. 2.4.1.1),
which can extend glucan chains using glucose-
1-phosphate (Glc-1-P) as a substrate (releas-
ing orthophosphate). This reaction is reversible
and it has been assumed that the enzyme prob-
ably acts in the phosphorolytic direction (re-
leasing Glc-1-P from glucan chains) due to the
relatively high ratio of orthophosphate to Glc-
1-P in plant cells (77). However, genetic studies
in different species have yielded mixed results.
Gene silencing in potato and mutation in Ara-
bidopsis does not alter starch levels. In contrast,
mutants of Chlamydomonas and of rice have con-
ditional altered starch phenotypes (23, 119).
Chlamydomonas has two plastidial phosphory-
lases (PhoA and PhoB), which have different
properties. The sta4 mutant lacks the PhoB iso-
form and has decreased starch contents under
nitrogen-limited growth conditions (in which
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starch normally accumulates to high levels; 23).
In the rice mutant (lacking the single plastidial
isoform, PHO1), starch content is normal when
the seeds develop at 30◦C but is decreased rela-
tive to controls at 20◦C (119). The explanations
offered for these phenotypes differ. Dauvillée
et al. (23) observed that PhoB is very strongly
inhibited by ADP-glucose so could well be in-
active during starch biosynthesis. Accordingly,
they proposed that the effect of loss of PhoB on
starch accumulation was indirect, perhaps re-
lating to potential interactions of the protein
with other starch biosynthetic enzymes (e.g.,
with BEs, as in wheat endosperm; 148). In con-
trast, Satoh et al. (119) proposed that the rice
endosperm PHO1 may synthesize linear glu-
cans that serve as primers for new amylopectin
and amylose molecules. To explain the tempera-
ture dependency of the mutant phenotype, they
suggested that other factors must also be in-
volved (potentially SS isoforms; see above). It
is plausible that the role of phosphorylase dif-
fers between species and tissues, and further
investigations of phosphorylase function are
necessary.

Granule numbers are increased in ISA1-
deficient plants of several species (12, 13, 178)
and different explanations have been proposed
for this phenomenon (12, 13). In Arabidopsis,
a likely explanation is that small, soluble glu-
cans resulting from the amylolytic turnover of
aberrant glucans formed in the absence of ISA1
provide primers for granule initiation: Thus the
effect of loss of ISA1 on granule number is prob-
ably indirect (136). In general, there is little
reason to suppose that ISA1 normally controls
granule number.

An intriguing study of Ostreococcus tauri, a
single-celled green alga, resulted in the pro-
posal that starch granules multiply by division
in this species (108). O. tauri cells have a sin-
gle chloroplast that contains one starch granule.
Electron micrograph images suggest that dur-
ing cell division the granule divides, with half
retained in the chloroplast of each daughter cell.
If this is indeed what happens, our current un-
derstanding of starch structure and metabolism

is clearly insufficient to explain how a starch
granule can be split in this way.

STARCH DEGRADATION

There has been rapid progress recently in un-
derstanding starch degradation (reviewed in 38,
82, 130, 171, 175, 176). It is clear that pathways
of degradation differ between plant organs, and
that distinct pathways may operate within the
same organ. Starch degradation is best un-
derstood in leaves, where transitory starch is
degraded at night, and in cereal endosperms
where storage starch is broken down over sev-
eral days after seed germination. The pathways
in these two organs share some components but
also have major differences. Our understanding
of the pathway in other starch-containing tis-
sues such as tubers, roots, and noncereal seeds
is more fragmentary (130).

The Pathways of Starch Degradation
in Chloroplasts

Transitory starch in leaves is degraded primar-
ily by hydrolysis of the constituent glucans to
maltose and glucose, both of which can be ex-
ported from the chloroplast and metabolized
in the cytosol (Figure 2) (101, 164, 165). Mu-
tations affecting key degradative enzymes de-
crease starch breakdown, resulting in the accu-
mulation of starch over repeated diurnal cycles
(so-called starch-excess or sex phenotypes; 15).
There is good evidence that starch degradation
is dependent on the reversible phosphorylation
of glucans at the surface of the starch granule,
which serves to solubilize the granule surface,
thus allowing hydrolases access to the glucan
chains.

Hydrolysis of the linear chains is catalyzed
primarily by β-amylases (α-1,4-glucan malto-
hydrolase; EC: 3.2.1.2), exo-acting enzymes
that release maltose from exposed nonreducing
ends of chains. β-Amylases cannot hydrolyze
α-1,6-branch points or act immediately adja-
cent to them. Thus, the complete degrada-
tion of amylopectin also requires hydrolysis of
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Linear malto-
oligosaccharides

Maltose

Branched malto-
oligosaccharides 

 Glc1P

Chloroplast
stroma

Glucose

ATP

AMP + Pi

AMP + Pi

Pi

Chloroplast
inner envelope 

1,2

3

4

5

7

3

5,6

8

9

10

11 

1: Glucan, water dikinase (GWD) 

2: Phosphoglucan, water dikinase (PWD) 

3: β-amylase (BAM1 & BAM3) 

4: Phosphoglucan phosphatase (SEX4) 

5: Isoamylase (ISA3) 

6: Limit dextrinase 

7: α-amylase

8: Disproportionating enzyme 

9: α-glucan phosphorylase 

10: Maltose transporter 

11: Glucose transporter

BAM3

PWD
BAM1

SEX4

ISA3

GWD

ATP

Figure 2
The pathway of starch degradation in chloroplasts and the role of transient glucan phosphorylation. Maltose
and malto-oligosaccharides are released from the surface of the starch granule during degradation. Malto-
oligosaccharides are metabolized in the stroma. Maltose and glucose are exported to the cytosol. Estimated
fluxes are indicated by relative arrow size. Dashed arrows represent the minor steps in Arabidopsis (see text).
Inset is a model depicting the role of phosphorylation by GWD and PWD in disrupting the packing of
amylopectin double helices (gray boxes). This allows the release of maltose and malto-oligosaccharides (black
lines) by β-amylases (BAMs) and DBE (ISA3). Phosphate (red dots) is concomitantly released by SEX4 to
allow complete degradation.

branch points by DBE activity. Higher-plant
genomes encode large numbers of β-amylase-
like proteins. Arabidopsis, for example, has nine
β-amylase genes (BAM1–9). The β-amylase
family can be divided into four distinct classes
and higher plants contain one or more genes of
each class (48). The importance of chloroplastic
β-amylase activity for transitory starch degra-

dation was established by experiments with
transgenic potatoes, in which repression of a
chloroplastic isoform led to a sex phenotype
(120). This finding has been confirmed and
extended in Arabidopsis (48, 70). Four of the
nine Arabidopsis BAM proteins (BAMs 1–4) have
been shown to be chloroplastic (48). BAM1
and BAM3 are active enzymes and partially
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redundant: bam1 and bam3 mutants have a wild-
type and a mild sex phenotype, respectively, but
the bam1bam3 double mutant has a strong sex
phenotype (48, 70). No function has yet been
ascribed to BAM2. The recombinant BAM2
protein has a very low specific activity compared
with BAM1 and BAM3, and bam2 mutants are
indistinguishable from wild-type plants (48).

BAM4 is unusual because its putative active
site has multiple substitutions of amino acid
residues that are strictly conserved in other, ac-
tive β-amylases, and the recombinant protein
does not have β-amylase activity (48). Other
members of this class of BAMs, including Ara-
bidopsis BAM9 and proteins from other species
have similar substitutions in their putative ac-
tive sites (48), and recombinant BAM9 has no
enzymatic activity (S. K. Lee and S. C. Zeeman,
unpublished data). Although BAM4 is appar-
ently noncatalytic, the bam4 mutant has a sex
phenotype, indicating that it is required for
starch degradation. Genetic analysis shows that
BAM4 does not act simply by modulating the
activity of the active β-amylases, as its loss in
the bam1bam3 double mutant background en-
hances the sex phenotype (48). One possible ex-
planation for the requirement for BAM4 is that
it senses maltose levels and transduces this in-
formation to modulate the starch degradation
rate by interaction with other starch-degrading
enzymes. Further work is needed to test this
hypothesis.

Several isoforms of BAM lack discernable
plastid transit peptides. If they are indeed out-
side the plastid, they are unlikely to be involved
in starch degradation. A high proportion of the
β-amylase activity in Arabidopsis leaves is con-
tributed by one such isoform, BAM5 (also called
RAM1), which has been shown to be present
within phloem sieve elements (158). Studies
of the bam5 mutant failed to discern a starch-
related phenotype (78) and its function remains
unclear.

DBEs release short, linear malto-oligo-
saccharides into the plastid stroma (27, 171).
Two DBEs (ISA3 and LDA) function in starch
degradation in Arabidopsis leaves. Both enzymes
preferentially remove short branches and have

Linear malto-
oligosaccharides:
named using the
number of glucosyl
residues; maltotriose,
maltotetraose, and
maltopentaose contain
three, four, and five
glucosyl residues,
respectively

Pullulan: a glucan
polymer produced by
the fungus
Aureobasidium pullulans
and consisting of
maltotriose units
linked end to end by
α-1,6-bonds. It is not
present in plants

their highest activity on β-limit dextrins. They
differ in the range of branch point configura-
tions that they are able to degrade, as illustrated
by the ability of LDA-type, but not ISA-type, to
degrade the fungal glucan pullulan (27, 61, 143,
168). There is functional overlap between ISA3
and LDA. Loss of LDA alone has no effect on
starch metabolism in Arabidopsis leaves, whereas
loss of ISA3 leads to a sex phenotype (27, 162).
Loss of both enzymes together (the isa3lda dou-
ble mutant), however, results in a phenotype
more severe than that of isa3 (27). The rela-
tive importance of ISA3 and LDA in leaf starch
degradation may differ between species. Unlike
Arabidopsis, maize mutants lacking LDA alone
(Zmpu1mutants) have reduced rates of starch
degradation in leaves at night (35).

The shortest malto-oligosaccharide on
which β-amylase can act is maltotetraose.
Maltotriose formed during the degradation
of starch is metabolized by disproportionat-
ing enzyme (D-enzyme; α-1,4-glucan 4-α-
glucanotransferase; EC: 2.4.1.25), which trans-
fers a maltosyl group from maltotriose to
another glucan, generating glucose and a
longer glucan that can be further degraded by
β-amylase. This activity is necessary for nor-
mal starch degradation in Arabidopsis leaves: In
mutants lacking D-enzyme (dpe1 mutants: 22),
the rate of starch degradation is reduced and
maltotriose accumulates in leaves at night. Two
additional enzymes, plastidial α-amylase and
plastidial α-glucan phosphorylase (see above),
are widely conserved in plants and may partic-
ipate in starch degradation. In Arabidopsis, mu-
tations resulting in loss of activity (the amy3
and phs1 mutants, respectively) do not result in
sex phenotypes under normal laboratory condi-
tions (170, 177). However, AMY3 does partici-
pate in starch degradation in Arabidopsis plants
in which other starch-degrading enzymes are
missing. For example, in mutants lacking the
two DBEs that participate in starch degrada-
tion (the isa3lda double mutant), AMY3 is in-
duced and is responsible for releasing branched
malto-oligosaccharides from the starch granule
surface (27; S. Streb and S. C. Zeeman, unpub-
lished data). The importance of chloroplastic
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α-amylase in leaf starch degradation appears to
differ between species. Rice plants with reduced
activity of chloroplastic α-amylase have a sex
phenotype (2).

Reversible Glucan Phosphorylation

Two classes of enzyme bind to starch and mod-
ulate the phosphate content of amylopectin.
These are glucan, water dikinases, which add
phosphate groups using the β-phosphate of
ATP, and phosphoglucan phosphatases, which
remove these phosphate groups. Glucan, wa-
ter dikinase (GWD; ATP: α-1,4-glucan, water
phosphotransferase; EC: 2.7.9.4, initially des-
ignated R1) was discovered as a starch granule–
binding protein in potato tubers (88). In trans-
genic potatoes deficient in GWD, fewer than 1
in 10,000 glucosyl residues of leaf starch amy-
lopectin have a phosphate group, compared
with ∼1 in 2000 in control plants. Further-
more, starch accumulates to very high lev-
els in leaves and cold-induced starch degra-
dation in tubers (leading to cold-sweetening;
see below) is prevented (88). Similarly, loss of
GWD in Arabidopsis (the sex1 mutant) leads to
a very severe sex phenotype (169). Subsequent
work established that GWD phosphorylates
the C6 position of glucosyl residues in amy-
lopectin (112, 113). A second glucan, water diki-
nase, PWD (for phosphoglucan, water dikinase,
ATP: phospho-α-1,4-glucan, water phospho-
transferase; EC: 2.7.9.5), phosphorylates the
C3 position of glucosyl residues (7, 74) and
is also required for normal starch breakdown:
Arabidopsis pwd mutants have a mild sex phe-
notype (7, 74). The action of PWD on amy-
lopectin requires the prior action of GWD
(hence its name). This suggests that PWD
activity is dependent on the presence of the
C6 phosphate group added by GWD, or the
change in glucan structure caused by the C6
phosphate (56). Arabidopsis also contains an ex-
traplastidial glucan, water dikinase (GWD2),
expressed primarily in the vasculature. Mutant
analysis shows that this is not required for leaf
starch metabolism and its function is unknown
(52).

The impact of phosphorylation on starch
degradation has been studied using stable
suspensions of insoluble, crystalline malto-
oligosaccharides as models for starch granules
(54, 56). GWD has a high affinity for crys-
talline malto-oligosaccharides, and phosphory-
lation results in extensive solubilization of the
constituent oligosaccharide chains. These ex-
periments support the idea that phosphoryla-
tion in vivo serves to disrupt the crystalline
structure of amylopectin (Figure 2) (113, 169).
The importance of this disruption for starch
degradation was shown by studies of the ac-
tivities of recombinant β-amylases and DBEs
(BAM1 and ISA3; see above) on starch gran-
ules isolated from leaves. The rate of degrada-
tion of phosphate-free starch granules (isolated
from sex1 mutants) by these enzymes was signif-
icantly increased by the simultaneous phospho-
rylation of the granule surface, brought about
by the addition of recombinant GWD and ATP
(36).

Recent research shows that removal of the
phosphate groups added by GWD and PWD is
necessary for complete starch degradation. The
loss from Arabidopsis leaves of a glucan-binding
phosphatase encoded at the SEX4 locus (also
designated as PTPKIS1 and DSP4; 42, 71, 100,
132) decreases the rate of starch degradation
(100, 172) and leads to the accumulation during
the night of soluble phospho-oligosaccharides
(75). Recombinant SEX4 can dephosphorylate
glucans, including semicrystalline amylopectin
(51, 75), acting on phosphate groups at either
the C6- or the C3-positions (55). The need
for dephosphorylation during starch degrada-
tion probably relates to the substrate require-
ments of β-amylases. These enzymes cannot
act on a glucan chain carrying a phosphate
group close to the nonreducing end (75, 144).
Thus, having served to disrupt the granule sur-
face, phosphate groups must be removed to al-
low full degradation of the glucan chains. In
the absence of SEX4, some β-amylolysis still
occurs and the phosphorylated starch granule
can also be attacked by DBEs and α-amylase—
giving rise to the observed build-up of phospho-
oligosaccharides in the sex4 mutant—but
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complete degradation to maltose and glucose is
not possible. Further in vitro analyses support
these ideas: The rate of starch degradation by
β-amylase and DBE is enhanced by the addition
of GWD and ATP (see above) and is further en-
hanced when SEX4 is also added (75).

Arabidopsis chloroplasts contain a second
glucan phosphatase–like protein, LSF1 (like
SEX FOUR1), which is required for normal
starch degradation. lsf1 mutants have a sex phe-
notype and reduced rates of starch degradation,
although the accumulation of starch is not as
pronounced as in sex4 mutants. Genetic analy-
sis suggests that SEX4 and LSF1 have distinct
rather than mutually redundant roles, but the
substrate for LSF1 in vivo has yet to be estab-
lished (21).

Based on the research discussed above, the
current model for starch degradation in leaves
involves transient amylopectin phosphory-
lation proceeding concurrently with glucan
hydrolysis (Figure 2) (36, 75). Each crystalline
lamella of amylopectin is structurally disrupted
via phosphorylation, allowing progressive
degradation and dephosphorylation by the
hydrolytic enzymes and phosphoglucan phos-
phatases, respectively. As the next crystalline
lamella is exposed, the process of disruption
begins again (Figure 2). The development
of this model has coincided with a renewed
interest in the phosphorylation of glycogen
in mammals. Glycogen, like amylopectin,
contains covalently linked phosphate (41, 86).
The mechanism of glycogen phosphorylation
is not known, but recent research shows that
dephosphorylation is carried out by a glycogen
phosphatase (laforin) related in sequence
to SEX4 (142, 166). Mutations abolishing
laforin function result in the accumulation
of aberrant glycogen that aggregates to form
insoluble polyglucosan bodies (Lafora bodies).
Lafora bodies have been described as starchlike
due to their dark staining when treated with
iodine solution, suggestive of a branching
architecture different from that of glycogen
(18). The accumulation of Lafora bodies in
neurons is proposed to be the underlying cause
of the neurodegenerative condition Lafora

disease (18). As in plants, the function of glucan
phosphorylation may be to promote or main-
tain glucan accessibility for hydrolysis, with
a requirement for the removal of phosphate
groups for complete degradation. If this is the
case, loss of laforin could affect both turnover
and structure of glucans, as in the sex4 mutant
of Arabidopsis (51, 141). However, laforin also
appears to function in the turnover of glycogen-
metabolizing enzymes through interaction
with a ubiquitin ligase called malin (155, 167).
Much remains to be elucidated about laforin
function and the significance of glycogen
phosphorylation.

Differences in Starch Degradation
Between Leaves and
Cereal Endosperm

Starch degradation in cereal endosperm occurs
in a radically different physical setting from the
process in the leaf mesophyll cell. At the time
of germination, the starchy endosperm is dead:
Cellular integrity is lost during the drying-out
phase of seed development. The tissue con-
sists largely of cell walls, starch granules, and
storage proteins. The product of starch degra-
dation is primarily glucose, which is taken up
by living cells in the embryo adjacent to the
endosperm (the scutellum). The enzymes that
degrade starch are either released into the en-
dosperm from the scutellum or the aleurone (a
layer of living cells that surrounds the starchy
endosperm) or in the case of β-amylase, laid
down within the endosperm during seed devel-
opment and converted to active forms during
germination by the action of proteases released
from the aleurone.

Biochemical studies established the pres-
ence in the endosperm of four starch-degrading
enzymes, α-amylase, β-amylase, DBE (specif-
ically LDA), and α-glucosidase (maltase; EC:
3.2.1.3), and their properties and structure-
function relationships have been studied in de-
tail (e.g., 10, 40, 76, 91). However, relatively lit-
tle is known about the importance of each of the
enzymes in the process of starch degradation,
in part because of the difficulty of manipulating
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Archaeplastida
(kingdom Plantae):
the three lineages are
Chloroplastida (green
plants and algae),
Rhodophyceae (red
algae), and
Glaucophyta (92)

their levels independently and in a controlled
manner.

It is generally accepted that α-amylase plays
a central role in endosperm starch degradation.
Upon germination, there is massive synthesis
of α-amylase in the aleurone and scutellum,
followed by secretion into the endosperm
(39). There it initiates the attack on the starch
granule, probably at specific sites (pores) on
the granule surface, resulting in a visible pitting
effect. Its endoamylolytic action releases a mix-
ture of soluble linear and branched oligosac-
charides. In barley, members of two classes of
α-amylase genes (HvAMY1 and HvAMY2) are
expressed during germination. The proteins
encoded by both families are more closely re-
lated to the extraplastidial AMY1 of Arabidopsis
than to the chloroplastic AMY3 (134, 170).
The properties of HvAMY1 and HvAMY2
differ, and it seems likely that they play distinct
roles in starch degradation (6). HvAMY2
has a strong affinity for starch as a substrate,
while HvAMY1 has a higher affinity for linear
malto-oligosaccharides (131). Repression of an
AMY1-type α-amylase in the rice endosperm
delays seedling establishment (2), confirming
its importance in starch mobilization.

The genes encoding the enzymes of tran-
sient glucan phosphorylation (i.e., GWD,
PWD, and the glucan phosphatases) are
conserved in cereal species and are probably
involved in the degradation of starch inside
plastids. However, there is no evidence that
transient glucan phosphorylation occurs in the
endosperm of germinated seeds. In fact, cereal
seed starches have very low levels of covalently
linked phosphate (9), and it is unlikely that there
would be sufficient ATP in the endosperm of
germinated seeds to sustain the repeated cycles
of phosphorylation proposed to occur during
degradation of leaf starch. The initial stage of
starch degradation in cereal endosperm thus
differs markedly from that in chloroplasts.

Linear and branched glucans released from
starch by α-amylase can be degraded further
by α-amylase, DBE and β-amylase to yield
maltose and short malto-oligosaccharides.
Unlike the situation in chloroplasts, β-amylase

seems to be at least partly redundant in this
process. Some cultivars of barley originating
from Tibet almost completely lack endosperm
β-amylase, yet seedlings grow normally (69).
Maltose and short malto-oligosaccharides
produced in the endosperm are degraded to
glucose by α-glucosidase (maltase). There
is evidence that α-glucosidase may also act
synergistically with α-amylase to remove
glucose directly from the granule surface (137).
This contrasts markedly with the fate of starch
degradation products in leaves. In Arabidopsis,
maltose produced by β-amylase in the chloro-
plast is exported to the cytosol (101, 165),
where it is metabolized by a transglucosidase
(DPE2; 20, 89). A similar transglucosidase is
necessary for cytosolic maltose metabolism
in potato leaves (82). The metabolism of
maltose in the leaf cytosol has been reviewed
recently (38). There is currently no evidence
for the involvement of an α-glucosidase in
maltose or malto-oligosaccharide metabolism
in Arabidopsis leaves.

EVOLUTION OF STARCH
BIOSYNTHESIS

Starch biosynthesis is unique to plants (defined
as the Archaeplastida) and evolved from the
ancestral ability to make glycogen. The recent
expansion of genome sequence information
has allowed comparative analysis of different
starch- and glycogen-synthesizing organisms
from the archaeplastidal lineages. Together
with cytological and biochemical studies,
this information has shed new light on the
possible evolutionary steps leading to the
starch biosynthetic machinery that exists in
higher plants today.

The Archaeplastida are generally consid-
ered to be monophyletic; that is, all members
are descended from a single ancestor in which
a primary endosymbiotic event occurred [en-
tailing the uptake of a cyanobacterial cell (the
symbiont) by a nonphotosynthetic eukaryotic
cell (the host); 92]. Most modern cyanobac-
teria synthesize glycogen, as do nonplant eu-
karyotes. However, the recent identification
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of modern cyanobacterial species that make
polymers more like starch (designated as ei-
ther semiamylopectin or cyanobacterial starch)
means that the primary endosymbiont itself
may have been able to synthesize a starchlike
polymer (32, 98, 125, 126). Differences in the
starch biosynthetic pathways between the ar-
chaeplastidal lineages have arisen during subse-
quent evolution. Most notably, in green plants
starch is synthesized in the plastid compart-
ment, whereas in red algae and in glaucophytes
it is synthesized in the cytosol. Interestingly,
some rhodophyte species appear to have re-
verted to synthesizing glycogen (126).

Analyses of the phylogeny of the protein se-
quences of starch metabolic enzymes have re-
vealed a mixture of host- and symbiont-derived
genes in each branch of the Archaeplastida (32–
34, 103). In green plants, the ADP-glucose-
utilizing soluble and granule-bound starch syn-
thases are derived from the symbiont. Red algae
and glaucophytes contain both UDP-glucose-
utilizing starch synthases derived from the host
and GBSS-like proteins derived from the sym-
biont. The ancestry of other starch metabolic
enzymes is also a mosaic; in all cases, branching
enzymes, phosphorylase, and β-amylases are
derived from the ancestral host, whereas DPE1
and isoamylase are proposed to be symbiont
derived (32, 103). The sequence of events that
resulted in cytosolic starch biosynthesis in some
Archaeplastida and plastidial starch biosynthe-
sis in others remains the subject of speculation
(32, 103).

Components of the starch biosynthetic ma-
chinery that are found in all starch-synthesizing
organisms are likely to have made an important
contribution at some stage in the evolution of
glucan polymers able to form starch granules.
For example, GBSS-like proteins are present in
all starch-synthesizing lineages examined thus
far. Even though GBSS is not essential for amy-
lopectin synthesis in higher plants today, its ca-
pacity to produce long glucan chains may have
been an important factor in the evolutionary
transition to the synthesis of amylopectin-like
rather than glycogen-like polymers (107). The
subsequent acquisition of other starch synthase

isoforms in the green plant lineage may have
rendered this original function of GBSS re-
dundant, and amylose synthesis may be a sec-
ondary function. Isoamylases are also present in
all starch-synthesizing organisms. Their origi-
nal function was probably in glucan degradation
(as is the case in glycogen-synthesizing bacteria;
25, 138). Their recruitment to glucan synthesis
is likely to have been an important step toward
the synthesis of glucan polymers able to form
starch granules. This step may have been facil-
itated by gene duplication events that allowed
the evolution of multiple isoforms with distinct
substrate specificities. Further insight into the
evolution of starch metabolism from ancestral
glycogen metabolism will be facilitated by the
recent development of model organisms from
the different branches of the Archaeplastida
(33, 105).

BIOTECHNOLOGICAL
MODIFICATION OF STARCH
METABOLISM

Starch is the major carbohydrate of nutritional
importance in the human diet and is also an
important industrial material. Starch for indus-
trial purposes is extracted predominantly from
corn, but significant amounts are also extracted
from a range of other species, including rice,
wheat, cassava, potato, arrowroot (Maranta
arundinacea), and sago palm (Metroxylon sagu).
Starches from different botanical sources have
different polymer compositions and struc-
tures and, hence, different physicochemical
properties (gelatinization temperature, viscos-
ity of cooked pastes and gels, etc.). These
properties—referred to as the functionality of
the starch—determine the range of applications
for which a given starch is used. Starch content
is also an important consideration in crops used
as forage and during the storage of harvested
crop organs (e.g., fruits, in which ripening in-
volves the conversion of starch to sugars, and
potato tubers, in which conversion of starch to
sugars leads to deterioration).

The modification of starch metabolism in
crops could be beneficial to increase starch
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TILLING: targetted
induced local lesions in
genomes; a method for
the identification of
chemically induced
mutations in specific
genes of interest

AGPase: in plants, a
heterotetramer
comprising two large
and two small
subunits, evolved from
a common ancestor
protein. In Escherichia
coli, AGPase is a
homotetramer of the
GlgC protein

accumulation in harvested organs, to prevent or
increase starch degradation (depending on the
crop and/or use), or to modify starch structure
to enhance or diversify its functionality in food
and as an industrial material. The latter is of
particular interest, as specialty applications
of starch often require it to be chemically
or physically modified after extraction to
achieve optimum functionality. Given the
large number of enzymes that are involved
in determining starch structure in a specific
plant organ, the potential number of different
starches that could be bioengineered by up-
or downregulation of the respective genes is
enormous. In diploid species that are sexually
propagated, breeding, potentially combined
with TILLING approaches, is the best method
to introduce combinations of mutations affect-
ing the genes that encode enzymes of starch
metabolism. Biotechnological methods may
be preferable or required if the target crop is
polyploid and/or asexually propagated, if the
target gene needs to be upregulated or only
partially downregulated, or if the desired trait
results from expression of a gene from another
species.

Biotechnological Approaches to
Increase Starch Biosynthesis

Most attempts to enhance starch accumulation
have focused on engineering ADP-glucose
pyrophosphorylase (AGPase) activity in plants.
This enzyme provides the substrate for SSs
and is subject to tight allosteric regulation.
Therefore a mutant variant of the AGPase
gene from Escherichia coli (glgC16), encoding
a differently regulated form of the enzyme,
has been widely used for overexpression in
plants. When glgC16 was targeted to plastids
in transgenic potatoes, some of the lines had up
to 60% more starch in tubers on a fresh-weight
basis than control plants (135). However, in
experiments with a different variety of potato
(139), as well as in cassava (62), maize (159),
and other species, increases of this magnitude
have not been seen. Therefore, manipulating
AGPase alone may not be the most promising

strategy for increasing starch contents in plant
storage organs (128).

There is good evidence that increasing the
supply of ATP to the plastid can stimulate
the production of ADP-glucose and hence the
rate of starch biosynthesis. First, overexpres-
sion of a plastidial envelope adenylate translo-
cator from Arabidopsis in potato increased
ADP-glucose levels twofold and increased
starch content by 16–36% compared with con-
trol tubers (50, 149). Second, the downregula-
tion of a plastidial adenylate kinase, an enzyme
that interconverts two molecules of ADP into
ATP and AMP, resulted in a tenfold increase
in ADP-glucose levels and a doubling of the
starch content in potato tubers, in both green-
house and field trials (110). It is possible that
the downregulation of adenylate kinase leads
to enhanced transport of ATP into the plastids
in exchange for ADP, which is released from
ADP-glucose upon glucan polymerization.

Manipulation of Starch Breakdown
to Enhance Crop Quality

An alternative approach to enhancing starch
content in crops in which starch turnover oc-
curs is to reduce the rate of starch degradation.
As discussed above, the addition of phosphate
groups to amylopectin by GWD is necessary for
starch degradation. To enhance the proportion
of starch—an easily digestible carbohydrate—
in fodder crops and products, the correspond-
ing GWD has been downregulated in trans-
genic clover (Trifolium repens), alfalfa (Medicago
sativa), and ryegrass (Lolium perenne; 45), as well
as in maize varieties used for silage produc-
tion (44). In all of these cases, the downreg-
ulation of GWD led to substantial increases of
the starch content in leaves, which ultimately
should lead to enhanced digestibility of the fod-
der crops. Downregulation of GWD to prevent
starch breakdown has also been exploited to en-
hance the quality of potato tubers. Potato tu-
bers degrade their starch during cold storage
and accumulate the reducing sugars fructose
and glucose (cold sweetening). The presence
of reducing sugars allows the Maillard reaction
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to occur during frying, leading to an undesir-
able dark coloring of the fried products and to
the production of toxic acrylamide (93). Down-
regulating GWD in potato tubers inhibits cold
sweetening (88) and reduces acrylamide pro-
duction during frying (115). Surprisingly, the
enzymes responsible for starch degradation in
potato tubers during cold storage remain un-
known. Their identification will be assisted by
the recent progress in Arabidopsis and will pro-
vide additional options for the inhibition of cold
sweetening.

An increased capacity for starch degradation
is of potential value in starch crops grown for
bioethanol production. Expression in corn (Zea
mays) of a thermostable α-amylase (80) has been
used to create so-called self-processing plants
that improve the economic viability of conver-
sion of starch to ethanol. The amylase is ex-
pressed in subcellular compartments that do not
participate in starch biosynthesis or storage, so
its presence does not affect starch accumulation
during growth of the crop. When milled kernels
are heated in water to gelatinize the starch, the
thermostable amylase initiates the conversion
of the starch to fermentable sugars.

Manipulation of Starch Structure
to Diversify Its Uses

The major targets for the manipulation of
starch structure in plants are to modify the rela-
tive proportions of amylopectin and amylose, to
change the chain length distribution in the amy-
lopectin, or to increase the phosphate content
of the starch. Due to the contrasting physico-
chemical properties of amylopectin and amy-
lose, it is generally advantageous if starches for
industrial applications are composed mainly of
one or the other. Many mutants have been de-
scribed in various cereal and legume species
that contain starches composed of only amy-
lopectin or that have a very high proportion of
amylose (73). Efforts have been made to intro-
duce these traits into potato and cassava, which
are generally difficult to breed, using trans-
genic approaches. This is partly because the

mutants in other species frequently show yield
penalties, which might not occur in cassava
and potato, and partly because starches from
these sources already have distinctive proper-
ties with specific industrial value (e.g., in the
case of potato, a relatively high phosphate con-
tent). The first transgenic potato and cassava
plants with modified starch were those in which
amylose was eliminated via the downregula-
tion of GBSS (106, 145, 156). No penalties on
the starch content were observed and plants
seemingly suited for commercialization were
produced almost 20 years ago. Problems with
gaining approval for commercialization of
transgenic crops in Europe mean that this has
still not been achieved. Instead, a mutant GBSS
from a nontransgenic amylose-free mutant of
potato, originally identified in a diploid vari-
ety (60), has been bred into a commercial cul-
tivar and commercially produced amylose-free
potato starch is derived from this. A nontrans-
genic amylose-free mutant has now also been
described for cassava (17), opening the possibil-
ity of commercially produced amylose-free cas-
sava starch without facing the regulatory hur-
dles surrounding transgenic lines.

It has proved more difficult to produce high-
amylose potato starch. The main approach has
been through downregulation of isoforms of
branching enzyme. When the major isoform
(BEI) was downregulated, only minor changes
in starch structure and no increases in the amy-
lose content were observed, despite the fact that
more than 95% of the measurable activity was
lost (72, 117). Subsequently, the minor tuber
isoform (BEII) was downregulated, giving an
apparent amylose content of the starch of 38%
compared with 30% in the starch from con-
trol plants (66). Only when both isoforms were
simultaneously downregulated were substan-
tial increases in the amylose content achieved
(reaching 75% of the granule; 122). Interest-
ingly, there seems to be an interaction between
the branching of starch and its phosphoryla-
tion during starch biosynthesis in potato tubers.
Simultaneous downregulation of GWD and the
BEs resulted in higher amylose contents (up to
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90%) than downregulation of BEs alone (87,
153). Downregulation of BEs led to marked
increases of the phosphate content of the starch
(117).

There are numerous reports in the literature
on diverse transgenic manipulations that af-
fect amylopectin structure (e.g., 84). Those that
were done in an amylose-free background are
arguably most suitable for further exploitation.
Based on the observation that the simultaneous
reduction of SSII and SSIII in potato led to the
synthesis of an amylopectin with an elevated
ratio of short to long chains (37, 83), Jobling
et al. (67) downregulated SSII and SSIII in com-
bination with GBSS, resulting in the produc-
tion of short-chain amylopectin almost free of
amylose. When heated in water this starch pro-
duces a gel that is stable through repeated cy-
cles of freezing and thawing—a highly desirable
trait. A similar approach was used to produce
high-phosphate amylopectin. Based on the ob-
servation that downregulation of BEI (117) or
SSIII (1) leads to an increased phosphate con-
tent, each has been simultaneously downregu-
lated with GBSS (133).

In contrast to potato and cassava starches,
cereal endosperm starches are generally low in
phosphate (9). With the discovery of GWD
and PWD, it is now possible to produce cereal
starches that contain higher amounts of phos-
phate through overexpression of those proteins
during seed development. This is especially in-
teresting because the superior quality of potato
starch for some applications relies partly on
its high phosphate content. The overexpres-
sion of GWD has now been achieved in wheat
(121), maize (43, 79), and rice (43). This report-
edly leads to the production of starches with

unprecedented swelling power when heated in
water (43).

Outlook for the Development of
Crops with Altered Starch Metabolism

The biotechnological development of crops
with altered starch metabolism is hampered
by two main problems. First, as mentioned
above, there are enormous numbers of en-
zyme variations—and thus starch structures—
that could be generated. However, the rela-
tionship between a given starch structure and
its resultant physicochemical properties is not
well understood. Thus, it is difficult to predict
what uses might be found for a starch with a
novel structure. Large amounts of starch are
generally needed for testing in different appli-
cations; these are difficult to produce for large
numbers of genotypes. Second, the high costs
associated with the regulatory procedures sur-
rounding transgenic plants make it commer-
cially unattractive to develop such crops, espe-
cially when a nontransgenic alternative exists.
Following the cisgenic (or intragenic) route in
which plants are transformed only with their
native DNA presents an exciting opportunity.
This approach involves the introduction of na-
tive promoter elements and coding sequences,
flanked by species-specific P-DNA elements
rather than by Agrobacterium-derived T-DNA
(115). One example of such an event where,
among other traits, cold-induced sweetening
has been suppressed in cisgenic potatoes is cur-
rently in the process of deregulation (116). The
outcome of this attempted commercialization
may have a large impact on the future of starch
biotechnology.
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